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MEASURABLE RECURRENCE AND 
QUASI-INVARIANT MEASURES 

BY 

S A H A R O N  S H E L A H  A N D  B E N J A M I N  WEISS 

ABSTRACT 

We characterize the wandering sets of a Borel au tomorphism T as being 
precisely those sets which have measure  zero for every non-atomic measu re / z  
which is quasi-invariant and ergodic for T. 

w Introduction 

In ergodic theory one studies the recurrence properties of a transformation 

T : X ---> X when X is endowed with the structure of a measure space, while in 

topological dynamics one studies analogous questions when X is a topological 

space. It seems very natural to investigate properties of T when X is merely a 

measured space, i.e., equipped with a o--algebra of subsets. Let (X, ~ )  be a 

standard Borel space, say X the unit interval and N the Borel subsets of X, and 

suppose that T : X---> X is an automorphism of (X, 1~), that is to say, T is one to 

one and onto and T ( ~ ) =  ~. For any B E ~  the proof of the Poincar6 

recurrence theorem shows that there exists B0 C B such that Bo E ~ and 

(i) all x E Bo, Tnx ~ Bo for infinitely many positive values of n;  

(ii) there exists a wandering set W E N (i.e., W N T ' W  = O for all n ~ 0) and 

B\BoC U~-~T"W. 

Indeed one can take for W the set of those x E B such that T"x f~ B all n _-> 1 
and put B0 = B \ U~_~ T"W. It is straightforward to check that the collection W" 

of sets E that lie in U~_~ T"W for some wandering set W E ~ form a ~r-ideal, 

i.e., W" is closed under countable unions and passage to subsets (in ~ of course). 

If one thinks of the sets in ~r as being trivial then we obtain the most trivial 

version of Poincar6's recurrence theorem (cf. the discussion in [2, ch. 17]) that, 

except for a trivial set (which may of course be all of B), all points of B return to 

B infinitely often. Our goal in this paper is to give another characterization of 
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the tr-ideal Ir in terms of .a, the collection of non-atomic probability measures 

/~ on (X, ~ )  which are quasi-invariant and ergodic for T. Letting N(/~) denote 

the it-ideal of null sets for /z, observe that ~4"C N(/.L) for any /z. The 
characterization we are after is 

TaEORSM. ~ = A , ~ , N ( ~ ) .  

A simple corollary of this characterization is the fact that if 0/4"# ~,  or 

equivalently X ~  ~V', then ~ is non-empty. In case X is given the structure of a 

complete separable metric space and T is assumed to be continuous then this 

corollary follows easily from the result of [1], and in a sense the construction 

given here is modelled after the one there. Here is another easy consequence 

(answering a question raised by T. Kamae): if T is an automorphism of a 

standard Borel space then ~r contains uncountable sets, in particular if 

S :{0, 1}z--*{0, i} z is the usual 2-shift ((Sx). = x.+,) and A is an uncountable 

S-invariant Borel subset of {0, 1} z then A has an uncountable wandering set. We 

conclude this introduction by outlining our strategy for proving the main result. 

We start with any set A E ~ but not in ~ and construct a subset B C A and an 

identification of B with {0, 1} N = Y so that TB, the transformation induced by T 

on B, i.e. T,x = T 'x  where n = min{n _-> 1 : T"x E B}, becomes the odometer 

on Y. Recall that the odometer D : Y--, Y is defined by Dy = y + 1, where the 

addition is that of the 2-adic integers with the usual identification of Y with the 

2-adic integers. Having done this we are done, because we can put on (B, To) an 

abitrary non-atomic measure/zB which is quasi-invariant and ergodic for (Y, D)  

and then in an obvious way extend/zs to a/~ E ~ ,  and we have t h a t / z ( B ) > 0 ,  
and thus B ~ .Ar(/z). 

In w we prove a result about a certain game which will serve as a substitute for 

completeness in showing that the B we construct in w has the structure of Y. 

The fact that we assume (X, ~ )  to be a standard Borel space is used in an 

essential way in w Even if ~ is assumed countably generated (X, ~ )  may carry 

no countably additive measure so that JR can be empty for all T, whereas W is 

certainly empty for the identity mapping, so that the result can fail dramatically 
for general measured spaces. 

w The game and its winning strategy 

In this section ~ can be any or-ideal in ~,  the Borel subsets of the unit interval 

X, and sets in ~ \ g' will be called non-trivial. The game we consider is played 

between two players, I, II, who, beginning with player I, alternate in choosing a 
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non-trivial subset contained in the previous choice of the other player. Player I 

wins if no point of X is contained in all the choices while player II wins in the 

contrary case. In detail: player I selects some non-trivial Ao, player II selects 

some non-trivial Bo C Ao, . . . ,  player I selects some non-trivial Bn C A , , . - . ,  

player I wins if No B, # O. In selecting An or B~ the players retain complete 

information concerning the previous choices. 

PROPOSITION 1. In the game described above player H has a winning strategy. 

PROOF. We need an explicit representation of G, and sets in G. Let G0 

consist of the closed subsets of X, the unit interval, Gt = countable unions of 

elements of Go, G2 = countable intersections of sets in G1," �9 ", G, = I_l~<~ G~ 

for a limit ordinal a, and for any ordinal a, define G,§ to be countable unions of 

elements of G., G,+2 to be countable intersections of elements of G~+1, etc., 

alternating unions and intersections. Since the complement of any element in G0 

is in G1 (any open set in [0, 1] is an ~ ) ,  O~<~ ~ = G where tot is the first 

uncountable ordinal. Each Borel set B (excluding the closed sets) occurs for the 

first time in some G0 and we call /3 the order of B. 

If B has order/3 > 0, it is clear that/3 is not a limit ordinal, and thus either B 

is of a union type, i.e. 

B =  U B~, B~EG~-~, n = 1 , 2 , - . -  
1 

or B is of intersection type, i.e. 

B =  f~ B~, ~ , ~ a _ ~ ,  n = 1 , 2 , . . . .  
1 

For each element B E ~ \ Go we fix one such representation - -  either as a union 

or as an intersection of Borel sets of lower order. To implement his strategy, 

player II will construct an auxiliary sequence of finite families of sets ME = 

{BE: l < n~}, k - -0 ,  1 , . . .  that will tell him how to choose the Bk's so that 

~ B~ ~ O. We will first describe the properties that the M~ 's will have and then 

explain how to inductively build them. The properties are: 

(1) Bk C B~' for all 1 _-< 1 =< nk. 

(2) BE ~ M E , ' ' "  C M~ C M~+~C..-. 

(3) If B~ is of intersection type with representation B~ = I'l~*.t B~ then 

B~.~EME+~ for all l<=i<=k. 

(4) If BE is of union type with representation 
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B ~ =  U B,k., 
i = l  

then for some i, B ~ E  ME+I. 
(5) M6 contains some closed interval 16 of length ~ 1/2 k+l. 

Now for the construction: To start with consider Ao, and note that either 

Ao n [0, �89 is non-trivial or A0 (q [~, I] is non-trivial. Choose L, to be that interval 

so that Ao ('1 Io is non-trivial and set 

Mo = {Ao n Io = Bo, Io}. 

The only relevant properties are (1), (2) and (5) and they are clearly satisfied. 

Suppose then that M~ has been constructed for ./_-< k satisfying the properties 

(1)-(5). At stage k + 1, player I selects some non-trivial Ak§ C B~ and player II 

proceeds to construct M6+1 as follows: 

He  begins by putting all of M6 in Mk§ and then for each Bf  of intersection 

type ("1~ B~  he adds B,6i, 1 _-< i -< k to M6+,. Next he takes the first (least l) B~ of 

union type (if any) and observes that [,.J~ B k,,, = B~; D BE D A6+1 and thus, since 

is a cr-ideal, there is some i such that Blk~ N A6+1 is non-trivial. He adds one of 
Bk's these ~.~ to M6§ and denotes E1 = B~k.~ f'l A6.1. He then takes up the next B~ 

k of union type (if any), [,-Jl B,~s, and finds some j such that B~.sAEI is 

non-trivial, adds B ~ / t o  M6.~ and sets E~ = B~j  n E2. He continues this L times 

in all, where L is the number of B~'s of union type. Finally, he divides 16 into 

two equal intervals, and denote by I6+1 that subinterval such that EL n I6+1 is 

non-trivial, add I6+~ to M6, set B6+~ = El. n I6.,, and add B6+1 to M6. Naturally 

M6., is taken to be Mk with all the additions described above. 

In a straightforward manner one checks that the properties (1)-(5) continue to 

hold for M6§ and thus a strategy for player II has been completely specified. To 

see that this is a winning strategy we note that since I0 D I~ D �9 �9 �9 is a decreasing 

sequence of closed subintervals with length going to zero, (")o Ik is a single point, 

say x. We will prove that x = OoBk  by proving that for all sets C in 

I,-Jo M6 = M, x E C. This last assertion will be proved by induction on the order 

of C. To begin with suppose that C is of order zero, i.e. a closed set, that occurs 

for the first time in M6. Then by property (1), C D B6 and hence C D B~ for all 

1 _-> k. But also Ia D BI for all I _-> k and thus the distance between x E 11 and C is 

at most the length of/~. This tends to zero, and since C is closed this implies that 

x E C. Now assume that for all a =</3 if C E M is of order a, x E C and suppose 

that C E M is of order/3 + 1. If it is of intersection type, C -- [")~ C~, by property 

(3), all the C, 's also belong to M, and since their order is -<_/3, x E C~ for all i and 

thus x E C. If C is of union type, [..J~ C~, then for some i, C~ E M by property (4), 
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and the order of G is _-< 13 and thus x E G and afortiori x E C. This completes 

the induction and proves that x E C for all C E M, in particular, by property (2) 

Bk E M for all k and thus x E n o  Bk as required. 

We will use the proposition in the form of the following immediate corollary: 

COROLLARY 2. There is a function rh defined from finite non-increasing 
sequences of ~ \ ~ to ~ \ ~g such that if C1 D C2 D .. �9 is any non-increasing 

sequence then qb( Cl, C2," " ,  G ) c G, 1 >= 1, and if for all 1, 

G+~ c qS(C,, C2, " ", G)  then n ~  C1 is non-empty and in fact consists of a single 
point. 

w The main construction 

Throughout this section T will be an automorphism of (X,/3) with no periodic 

points such that X ~  ~', the o--ideal generated by the wandering sets. An easy 

consequence of the lack of periodic points is the following useful lemma: 

LEMMA 3. I f  C is any non-trivial set and L >= 1 is any positive integer there is a 
non-trivial set D C C such that D, T, D,.  �9 T I D  are pairwise disjoint. 

PROOF. Recall that X is the unit interval and denote by d(x , y )  the usual 

metric there. Observe that for each n the set 

E, ={x :d(T~x, TJx)>= I/n all 0 =  < i  < j  =<L} 

is in ~. Since T has no periodic points U~ E, = X, and thus for some no, E,~ n C 

is non-trivial. Covering X with a finite number of sets F, of diameter less than 

1/2n0 we see that for some i0, F~ n E,~ n C is non-trivial and it may be taken for 

D. 
Combining this lemma with the proof of Poincar6's recurrence theorem gives 

LEMMA 4. I f  C is a non-trivial set then for some positive integer L there is a 

non-trivial set D C C such that: 

(a) T J D N D = f ~ ,  I<=j<=L; 

(b) TLD C C. 

We now begin the construction of our Cantor set in X. We will use the 

following notation: E = U~ {0,1}", for tr E E; I tr [ will denote the length of o-, i.e., 

that n such that tr E {0, 1}" ; and o'tr' will denote the concatenation of tr, tr' E E. 

By Lemma 3 there is some non-trivial Ao such that Ao n TAo ~ 0 .  Set 

Bo = qb(Ao), B, = c~(TBo). 
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Next apply Lemma 4 to find a non-trivial Aoo C T-'B~ together with some L, _-> 1 

such that: TL~AOO C T-1B, and Aoo t3 T~Aoo = Q5 for i < L,. We set now 

Boo = 4, (ao,  Aoo), B,o = $ (Bi, TBoo), 

Sol = &(Ao, TL1-'Blo), S u  = ~b(B,, TBo,). 

Once again we apply Lemma 4 to find a non-trivial Aooo C T -L, lBn together 

with some L2 -> 1 such that: TL~Aooo C T- 'BH and Aooo 71 T ~ A ~  = 0 for i < L2. 

We set now 

Booo = ~b(Ao, Aoo, Aooo), 

Bomo = ~b(Ao, Bol, T L' 'B,oo), 

Boo, = r Bo,, TL::L'-' B,,o), 

Bon = $(Ao, Bo~, T~:IB,ol), 

The pattern should now be clear. We 

B,oo = ~b (B1, Blo, TBooo), 

B,,o = ~b(B1, B,,,  TBo,o), 

Blol = r Blo, TBool), 

B,A1 = ~b(el,  Bal, TBoli). 

are constructing a family of sets 

{Btr :tr EE} and Ao, Aoo,"" . ,A~ that will have the following properties: 

(1) If cr~', o-~, �9 �9 -,o- 2"- denote the elements of {0, 1}" in lexicographic order from 

left to right, then there are integers 17 such that 

Bo-i+~ C T~T Bo'j, l < j < 2 "  

n 2 n  

and for i < lj ,  TiBo'j is disjoint from 1.31 Btrj ; 

(2) Ao- C T-~- ,B~. - , ,  M._~ = X~:l '-l 1~'-', Bo- = 6(Ao,  Aoo,'" ",Ao.), 

Bo'~+l = ~b (Bo'~+l(1), BtrT+,(1), try'+,(2),..., TIBo-~) 

for 1 < ] < 2  ". 

If we have already done so for n, then Ao.+, is chosen by applying Lemma 4 to 

T - ~ B I . ,  and finding Ao.*, and L. so that TL.Ao.+, C T - ~ B 1 .  but TiAo~+, f3 
Ao . . . .  O for i < L . ,  for 1_<-] <2",  we take for 17 +1= l j ,  for "+~ " 12. = L .  - M .  
( r e c a l l M . =  2. , " 12.+j"+'--lj <=j 2". E1 l j), and "for  1 < Then (2) for n + 1 defines Bo- 

for all a with length n + 1. 

Denote  by Y = {0, l f f  and by D : Y ~ Y the mapping defined by considering 

elements of Y as 2-adic integers and setting Dy = y + 1. Corollary 2 applies to 

each sequence formed by Byo:. Byt2)," " " where y E Y and y(n)  represents the 

initial n-segment of y, and gives a point 

u(y)= 71 
1 
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The set of all these points, U, is of course in 1-1 correspondence with Y, and 

I U coincides with the usual Borel structure on Y under this correspondence. 

What is crucial is that T,, the transformation induced by T on U, corresponds to 

the odometric map, D, defined above. We formulate this conclusion as a 

proposition that summarizes the construction. 

PROPOSITION 5. There is a set U C X ,  and a one-to-one onto map 

0 : U ~ Y = {0, 1} r~ such that the 0 is a Borel automorphism between the standard 

Borel structure on Y and ~ I U, and such that DO = OTu. 

Now there are plenty of ergodic non-atomic measures quasi-invariant for D 

on Y. Indeed, up to orbit equivalence they represent all possible behaviour (see, 

for example, [3]). Any such measure /z on U easily extends to an ergodic 

quasi-invariant measure for T on X by looking at I, Jo  T"U, and on 

Un = T n U \  I,.,J TJU 
j<n 

putting the measure (1/2")T~/~ I T-nUn. But for the fact that the finite invariant 

measure on U can become infinite in this way, the orbit equivalence class 

doesn't  change, and we have on X a representative of any type III, or the type 

IL  transformation. Had we been given a fixed non-trivial set A to begin with, 

the discussion could be carried out for (A, ~ I A, TA) and thus we could have 

constructed an ergodic non-atomic quasi-invariant measure for T that gives 

positive measure to A. This proves the main theorem described in w 
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