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MEASURABLE RECURRENCE AND
QUASI-INVARIANT MEASURES

BY
SAHARON SHELAH AND BENJAMIN WEISS

ABSTRACT

We characterize the wandering sets of a Borel automorphism T as being
precisely those sets which have measure zero for every non-atomic measure u
which is quasi-invariant and ergodic for T.

§1. Introduction

In ergodic theory one studies the recurrence properties of a transformation
T : X — X when X is endowed with the structure of a measure space, while in
topological dynamics one studies analogous questions when X is a topological
space. It seems very natural to investigate properties of T when X is merely a
measured space, i.e., equipped with a o-algebra of subsets. Let (X, #) be a
standard Borel space, say X the unit interval and % the Borel subsets of X, and
suppose that T : X — X is an automorphism of (X, %), that is to say, T is one to
one and onto and T(#B)=%. For any B €A the proof of the Poincaré
recurrence theorem shows that there exists BoC B such that B,€ & and

(i) all x € By, T"x € B, for infinitely many positive values of n;

(ii) there exists a wandering set W € @ (i.e., W N T"W = J for all n # 0) and
B\B,c U~ T"w.

Indeed one can take for W the set of those x € B such that T"xZ B alln =1
and put By= B\ U2 T"W. 1t is straightforward to check that the collection %
of sets E that lie in U”. T"W for some wandering set W € &B form a o-ideal,
i.e., W is closed under countable unions and passage to subsets (in % of course).
If one thinks of the sets in W as being trivial then we obtain the most trivial
version of Poincaré’s recurrence theorem (cf. the discussion in [2, ch. 17]) that,
except for a trivial set (which may of course be all of B), all points of B return to
B infinitely often. Our goal in this paper is to give another characterization of
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the o-ideal % in terms of A, the collection of non-atomic probability measures
p on (X, B) which are quasi-invariant and ergodic for T. Letting ¥ (u ) denote
the o-ideal of null sets for u, observe that % C A(uw) for any u. The
characterization we are after is

THEOREM. W =), caN(p).

A simple corollary of this characterization is the fact that if W # %, or
equivalently X & W, then  is non-empty. In case X is given the structure of a
complete separable metric space and T is assumed to be continuous then this
corollary follows easily from the result of [1], and in a sense the construction
given here is modelled after the one there. Here is another easy consequence
(answering a question raised by T. Kamae): if T is an automorphism of a
standard Borel space then % contains uncountable sets, in particular if
§:{0,1}*—{0,1}* is the usual 2-shift ((Sx). =x..,) and A is an uncountable
S-invariant Borel subset of {0, 1}* then A has an uncountable wandering set. We
conclude this introduction by outlining our strategy for proving the main result.
We start with any set A € 3 but not in % and construct a subset B C A and an
identification of B with {0, 1}¥ = Y so that T, the transformation induced by T
on B, i.e. Tyx = T"x where n =min{n = 1: T"x € B}, becomes the odometer
on Y. Recall that the odometer D : Y — Y is defined by Dy =y + 1, where the
addition is that of the 2-adic integers with the usual identification of Y with the
2-adic integers. Having done this we are done, because we can put on (B, T5) an
abitrary non-atomic measure us which is quasi-invariant and ergodic for (Y, D)
and then in an obvious way extend up to a u € #, and we have that u(B)>0,
and thus B& A ().

In §2 we prove a result about a certain game which will serve as a substitute for
completeness in showing that the B we construct in §3 has the structure of Y.
The fact that we assume (X, B) to be a standard Borel space is used in an
essential way in §2. Even if % is assumed countably generated (X, ®) may carry
no countably additive measure so that # can be empty for all T, whereas ¥ is
certainly empty for the identity mapping, so that the result can fail dramatically
for general measured spaces.

§2. The game and its winning strategy

In this section & can be any o-ideal in %, the Borel subsets of the unit interval
X, and sets in B\ & will be called non-trivial. The game we consider is played
between two players, I, II, who, beginning with player I, alternate in choosing a
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non-trivial subset contained in the previous choice of the other player. Player I
wins if no point of X is contained in all the choices while player II wins in the
contrary case. In detail: player I selects some non-trivial Ao, player II selects
some non-trivial B,C Ao, -, player I selects some non-trivial B, C A,,- -,
player I wins if (g B, # . In selecting A, or B, the players retain complete
information concerning the previous choices.

PROPOSITION 1. In the game described above player II has a winning strategy.

ProOF. We need an explicit representation of %, and sets in &. Let %,
consist of the closed subsets of X, the unit interval, %, = countable unions of
elements of %o, B, = countable intersections of sets in By, -+, B, = Uy, By
for a limit ordinal a, and for any ordinal a, define %, ., to be countable unions of
elements of B., B... to be countable intersections of elements of %..,, etc.,
alternating unions and intersections. Since the complement of any element in %,
is in %, (any open set in [0,1] is an &,), U..,, B. = B where w, is the first
uncountable ordinal. Each Borel set B (excluding the closed sets) occurs for the
first time in some %, and we call B the order of B.

If B has order 8 >0, it is clear that B is not a limit ordinal, and thus either B
is of a union type, i.e.

@™

B = U B,., B,,e%p_], n=1,2,"‘

1

or B is of intersection type, i.e.
B:‘nB,., %,.E%g-], n=1,2,"'.
1

For each element B € 3B\ %, we fix one such representation — either as a union
or as an intersection of Borel sets of lower order. To implement his strategy,
player II will construct an auxiliary sequence of finite families of sets M, =
{BF:l<m}, k=0,1,--- that will tell him how to choose the B.’s so that
ﬂ? B, # . We will first describe the properties that the M, ’s will have and then
explain how to inductively build them. The properties are:

(1) BcCBfforal 1=l=n,.

2) BiEM,, - - CM. C M, C---.

(3) If B¥is of intersection type with representation B¥ = (., B then

5 E M forall1=i=<k

(4) If Bf is of union type with representation
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Br= U B

1

then for some i, BX, € M, ,,.

(5) M. contains some closed interval I of length =1/2*"".

Now for the construction: To start with consider A,, and note that either
Ao N0,1] is non-trivial or A¢N [}, 1] is non-trivial. Choose I, to be that interval
so that A,N I, is non-trivial and set

M, = {Ao N I, = By, Io}~

The only relevant properties are (1), (2) and (5) and they are clearly satisfied.
Suppose then that M, has been constructed for j = k satisfying the properties
(1)~(5). At stage k + 1, player I selects some non-trivial A,., C B, and player II
proceeds to construct M,., as follows:

He begins by putting all of M, in M.., and then for each Bf of intersection
type M} B he adds BY, 1 =<i =k to My... Next he takes the first (least I) Bf of
union type (if any) and observes that U7 B% = BX D B, D A,., and thus, since
& is a o-ideal, there is some i such that Bf;N A,., is non-trivial. He adds one of
these Bi/’s to My.., and denotes E, = B{;N A,.,. He then takes up the next B,
of union type (if any), U7 B%;, and finds some j such that B%,NE, is
non-trivial, adds BY,; to M., and sets E, = B¥, ;N E,. He continues this L times
in all, where L is the number of B{’s of union type. Finally, he divides I, into
two equal intervals, and denote by .., that subinterval such that E, NI, is
non-trivial, add L., to M,, set B, = E; N L., and add Bi., to M,. Naturally
M., is taken to be M, with all the additions described above.

In a straightforward manner one checks that the properties (1)-(5) continue to
hold for M, ,,, and thus a strategy for player II has been completely specified. To
see that this is a winning strategy we note that since I, D I, D - - - is a decreasing
sequence of closed subintervals with length going to zero, (5 I is a single point,
say x. We will prove that x =(1; B, by proving that for all sets C in
Us M, = M, x € C. This last assertion will be proved by induction on the order
of C. To begin with suppose that C is of order zero, i.e. a closed set, that occurs
for the first time in M,. Then by property (1), C D By and hence C D B, for all
1z k. Butalso I, D B, for all | = k and thus the distance between x € I, and C is
at most the length of I,. This tends to zero, and since C is closed this implies that
x € C. Now assume that for all « = B8 if C € M is of order a, x € C and suppose
that C € M is of order 8 + 1. If it is of intersection type, C = (1} C, by property
(3), all the C;’s also belong to M, and since their order is = 8, x € C, for all i and
thus x € C. If C is of union type, U7 G, then for some i, C; € M by property (4),
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and the order of C is =B and thus x € C; and a fortiori x € C. This completes
the induction and proves that x € C for all C € M, in particular, by property (2)
B, €M for all k and thus x € N B, as required.

We will use the proposition in the form of the following immediate corollary:

CoROLLARY 2. There is a function ¢ defined from finite non-increasing
sequences of B\E to B\E such that if C,D C,D -+ is any non-increasing
sequence then ¢(C\,C,---,C)CC, =1, and if for all |
Co CH(C, Coy- -+, C) then 1] C, is non-empty and in fact consists of a single
point.

§3. The main construction

Throughout this section T will be an automorphism of (X, 8) with no periodic
points such that X& %, the o-ideal generated by the wandering sets. An easy
consequence of the lack of periodic points is the following useful lemma:

Lemma 3. If Cis any non-trivial set and L = 1 is any positive integer there is a
non-trivial set D C C such that D, T, D, - - -, T*D are pairwise disjoint.

Proor. Recall that X is the unit interval and denote by d(x,y) the usual
metric there. Observe that for each n the set

E,={x:d(T'x, T'x)=1/n al0=i<j=L}

is in . Since T has no periodic points UTE, = X, and thus for some no, E,,N C
is non-trivial. Covering X with a finite number of sets F; of diameter less than
1/2n, we see that for some i,, F, N E, N C is non-trivial and it may be taken for
D.

Combining this lemma with the proof of Poincaré’s recurrence theorem gives

LemMA 4. If Cis a non-trivial set then for some positive integer L there is a
non-trivial set D C C such that:

@ TDND=J,1=j=L;

(b) T'DCC.

We now begin the construction of our Cantor set in X. We will use the
following notation: X = U7 {0, 1}, for o €3; | o | will denote the length of o, i.e.,

that n such that o €{0,1}"; and oo’ will denote the concatenation of o, o' € 3.
By Lemma 3 there is some non-trivial A, such that A,N TA,# <. Set

By=¢(Ao),  Bi=o(TBy).
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Next apply Lemma 4 to find a non-trivial A C T7'B, together with some L, =1
such that: TAgC T'B, and ApN T'Ag = for i < L,. We set now

By = ¢(A0, Aoo), By = dJ(Bl, TBoo),
By, = d’(Ao, ’IerlB10), B, = ¢(B1, TBm)-

Once again we apply Lemma 4 to find a non-trivial Ao C T™"7'B,, together
with some L, =1 such that; TAweC T7'B;; and Ao N T Ao =D for i < L,.
We set now

Boow = ¢(Ao, Ao, Aom), Biw = ¢(B1, B, TByw),
Boiww = ¢ (Ao, Boi, TH7'Big), Biio= ¢ (B, Bu1, TBow),
Boo: = ¢ (Ao, Ba, T "' Byyo), Bio1 = ¢(By, Bio, TBor)s
Bou = ¢ (Ao, Boi, T""'Bigy), Biii = ¢(By, By, TBow).

The pattern should now be clear. We are constructing a family of sets
{Bo:0 €%} and Ay, A, -+, A§ that will have the following properties:

(1) If 0§, 03, - -, o» denote the elements of {0, 1}" in lexicographic order from
left to right, then there are integers [} such that

Bo;.CT%Bs;, 1=j<2"

and for i <1}, T'Ba; is disjoint from U7 Bo;;
(2) AO" C T_M"AIBI"’ly Mn—l = 212;?_1 l;lAla BO" = ¢(A0’ A001 ot '7A0")’

Bo}. = ¢(Bo}u(l), Boju(l), 074:(2),- - -, T'Boy)

for 1=j <2

If we have already done so for n, then Ao+ is chosen by applying Lemma 4 to
T *Bi~, and finding A¢+ and L, so that T™Agp+ C T ™B;» but T'AgN
Apn = for i <L,, for 1=j<2", we take for I}"" =1}, for I;;'=L,— M,
(recall M, =Z1"'I}), and I53+);= I} for 1 =j <2 Then (2) for n + 1 defines Bo
for all o with length n +1.

Denote by Y ={0,1}" and by D : Y — Y the mapping defined by considering
elements of Y as 2-adic integers and setting Dy =y + 1. Corollary 2 applies to
each sequence formed by B, ), By, - - where y € Y and y(n) represents the
initial n-segment of y, and gives a point

u(y)= N Byw-
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The set of all these points, U, is of course in 1-1 correspondence with Y, and
RB I U coincides with the usual Borel structure on Y under this correspondence.
What is crucial is that T,,, the transformation induced by T on U, corresponds to
the odometric map, D, defined above. We formulate this conclusion as a
proposition that summarizes the construction.

PROPOSITION 5. There is a set UCX, and a one-to-one onto map
0: U— Y ={0,1}" such that the 0 is a Borel automorphism between the standard
Borel structure on Y and B l U, and such that D8 = 0Ty.

Now there are plenty of ergodic non-atomic measures quasi-invariant for D
on Y. Indeed, up to orbit equivalence they represent all possible behaviour (see,
for example, [3]). Any such measure u on U easily extends to an ergodic
quasi-invariant measure for T on X by looking at U; T"U, and on

U.=TU\U TU
j<n
putting the measure (1/2")T"u l T7"U,. But for the fact that the finite invariant
measure on U can become infinite in this way, the orbit equivalence class
doesn’t change, and we have on X a representative of any type III, or the type
IL. transformation. Had we been given a fixed non-trivial set A to begin with,
the discussion could be carried out for (A, B IA, T.) and thus we could have
constructed an ergodic non-atomic quasi-invariant measure for T that gives
positive measure to A. This proves the main theorem described in §1.
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